

Development 
    of a Whirl-Resistant Bit 
    
    19572
Warren, Thomas M.
    Brett, J. Ford
    Sinor, L. Allen
    
    Introduction
    The detrimental effects of impact loading on PDC bits have long been recognized, 
    but most previous discussions of PDC bit wear have concentrated primarily 
    on thermal effects. Amoco Production Co.'s field tests have shown that cutter 
    failure, especially early in the life of a bit, is more likely to be caused 
    by impact damage than by thermal effects. Impact damage is sometimes difficult 
    to observe because it often precedes and is destroyed by the subsequent thermally 
    accelerated wear that is frequently evident when dull bits are pulled. A reduction 
    in the frequency of broken and chipped cutters, which accelerate cutter wear, 
    would allow longer bit runs, faster rates of penetration (ROP's), and possibly 
    cheaper bits because fewer diamond cutters would be needed. Brett et al. describe 
    bit whirl and show that it is the predominant cause of impact loading. Whirl 
    is defined as a predominant cause of impact loading. Whirl is defined as a 
    condition where the instantaneous center of rotation moves about the bit face 
    as the bit rotates. This type of loading chips cutters and accelerates cutter 
    damage and wear for PDC bits. The objective of the research presented here 
    was to extend use of PDC bits into rocks that are too "ratty" (i.e., 
    inhomogeneous) for acceptable performance from current PDC designs. Most of 
    the field testing was conducted at the Catoosa test facility near Tulsa. Warren 
    and Canson describe this test rig, and Winters et al describe the site's geology. 
    
Bit Stability
bit balance can determine the force pushing the bit away from a constant point of rotation, but it cannot tell whether the bit will have a tendency to return to or move farther away from that point when it is displaced. This limitation of the static analysis results from the assumption that the cutter forces are constant for a full revolution of the bit. The restoring force necessary for a stable bit design can potentially result from forces that act on the drill collar above the potentially result from forces that act on the drill collar above the bit, from features that are built into the cutting structure of the bit, or from stabilizer pads on the bit. No matter how the restoring force is created, a relatively large force for a small displacement is required to prevent whirl.
Stabilization Above the Bit Face
laterally. This provides a damping 
    that may reduce the effects of bit whirl at higher inclinations. As Brett 
    et al. discuss, high rotational speeds increase the tendency for a bit to 
    whirl, resulting in much larger side forces and displacements. In most situations, 
    these create a greater tendency for a bit to whirl when it is run on a downhole 
    motor than when it is rotated by the drillstring. There is also a greater 
    tendency for the motor stabilizers to hang up on ledges caused by intermittent 
    bit whirl. In cases where a motor is run and the drillstring is rotated, an 
    opportunity exists to uncouple the cutting of the final hole diameter from 
    the bit. This can be accomplished by use of a slightly undersize bit and by 
    stabilization of the motor with a radial stabilizer preceded by an axial cutting 
    section to cut the final borehole wall, as shown in Fig. 3. Because the motor 
    is rotated more slowly than the bit, the tendency to whirl is reduced. Consequently, 
    the stabilizers have a much better chance of making tight contact with the 
    wellbore wall.